domingo, 15 de diciembre de 2013

domingo, 8 de diciembre de 2013

MÉTODO DE LA MATRIZ INVERSA




MÉTODO DE LA MATRIZ INVERSA
 


Si premultiplicamos (multiplicamos por la izquierda) o posmultiplicamos (multiplicamos por la derecha) una matriz cuadrada por su inversa obtenemos la matriz identidad.
A · A−1  = A−1 · A = I

Propiedades

 1  (A · B)−1  = B−1 · A−1
 2  (A−1)−1  = A
 3  (k · A)−1  = k−1 · A−1
 4  (At)−1  = (A−1)t

Cálculo por el método de Gauss

Sea A una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A−1, seguiremos los siguientes pasos:
 1  Construir una matriz del tipo M = (A | I), es decir, A está en la mitad izquierda de M y la matriz identidad I en la derecha.
Consideremos una matriz 3x3 arbitraria:

Matriz
La ampliamos con la matriz identidad de orden 3.

paso 1º

Regla de Sarrus



La regla de Sarrus 

es un método fácil para memorizar y calcular el determinante de una matriz 3×3. Recibe su nombre del matemático francés Pierre Frédéric Sarrus..





Esta regla mnemotécnica es un caso especial de la fórmula de Leibniz y ha sido conocido que no puede aplicar para matrices mayores a 3×3. Sin embargo, en octubre del año 2000, el matemático Gustavo Villalobos Hernández de la Universidad de Guadalajara, en México, encontró un método para calcular el determinante de una matriz de 4×4, sin reducir a determinantes de 3×3 con la matriz adjunta y el menor complementario. Su resultado es una extensión completa de la Regla de Sarrus, ya que utiliza el mismo método, obteniendo directamente los 24 términos requeridos para su cálculo.